The Rough Sets Feature Selection for Trees Recognition in Color Aerial Images Using Genetic Algorithms
نویسندگان
چکیده
Selecting a set offeatures which is optimalfor a given task is the problem which plays an important role in a wide variety of contexts including pattern recognition, images understanding and machine learning. The concept of reduction of the decision table based on the rough set is very useful for feature selection. In this paper, a genetic algorithm based approach is presented to search the relative reduct decision table of the rough set. This approach has the ability to accommodate multiple criteria such as accuracy and cost of classification into the feature selection process and finds the effective feature subset for texture classification . On the basis of the effective feature subset selected, this paper presents a method to extract the objects which are higher than their surroundings, such as trees or forest, in the color aerial images. The experiments results show that the feature subset selected and the method of the object extraction presented in this paper are practical and effective.
منابع مشابه
Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملAutomatic Image Annotation Using Decision Trees and Rough Sets
The process which attaches label to a digital image by understanding the contents of image is termed as Automatic Image Annotation (AIA). Color and texture are the prominent features of a digital image. The content based image understanding is possible by using the feature strength of color and texture of an image. A classifier is designed using Decision Trees (DT) and Rough Sets (RS) to tag un...
متن کاملImprovement of effort estimation accuracy in software projects using a feature selection approach
In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010